direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×C22≀C2, C24⋊14D6, (C2×D4)⋊17D6, D6⋊11(C2×D4), C22⋊6(S3×D4), C23⋊2D6⋊2C2, D6⋊D4⋊8C2, (S3×C24)⋊2C2, (C2×C12)⋊1C23, D6⋊C4⋊9C22, C22⋊C4⋊23D6, (C6×D4)⋊5C22, C24⋊4S3⋊5C2, (C22×S3)⋊14D4, (C22×C6)⋊1C23, (C23×C6)⋊8C22, C23⋊2(C22×S3), C6.54(C22×D4), (C2×D12)⋊17C22, (C2×C6).132C24, (C22×S3)⋊2C23, (C2×Dic3)⋊2C23, (S3×C23)⋊20C22, C6.D4⋊13C22, C22.153(S3×C23), (C2×S3×D4)⋊5C2, (C2×C6)⋊5(C2×D4), C2.27(C2×S3×D4), C3⋊2(C2×C22≀C2), (S3×C2×C4)⋊5C22, (S3×C22⋊C4)⋊1C2, (C2×C4)⋊1(C22×S3), (C3×C22≀C2)⋊3C2, (C2×C3⋊D4)⋊7C22, (C3×C22⋊C4)⋊3C22, SmallGroup(192,1147)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C22≀C2
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f2=g2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >
Subgroups: 2064 in 662 conjugacy classes, 131 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C22≀C2, C22≀C2, C22×D4, C25, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, C2×D12, S3×D4, C2×C3⋊D4, C6×D4, S3×C23, S3×C23, S3×C23, C23×C6, C2×C22≀C2, S3×C22⋊C4, D6⋊D4, C23⋊2D6, C24⋊4S3, C3×C22≀C2, C2×S3×D4, S3×C24, S3×C22≀C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22≀C2, C22×D4, S3×D4, S3×C23, C2×C22≀C2, C2×S3×D4, S3×C22≀C2
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 10)(2 12)(3 11)(4 7)(5 9)(6 8)(13 22)(14 24)(15 23)(16 19)(17 21)(18 20)
(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,10)(2,12)(3,11)(4,7)(5,9)(6,8)(13,22)(14,24)(15,23)(16,19)(17,21)(18,20), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,10)(2,12)(3,11)(4,7)(5,9)(6,8)(13,22)(14,24)(15,23)(16,19)(17,21)(18,20), (13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,10),(2,12),(3,11),(4,7),(5,9),(6,8),(13,22),(14,24),(15,23),(16,19),(17,21),(18,20)], [(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)]])
G:=TransitiveGroup(24,360);
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 2N | 2O | ··· | 2T | 2U | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | ··· | 6I | 6J | 12A | 12B | 12C |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 4 | 6 | ··· | 6 | 12 | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | S3×D4 |
kernel | S3×C22≀C2 | S3×C22⋊C4 | D6⋊D4 | C23⋊2D6 | C24⋊4S3 | C3×C22≀C2 | C2×S3×D4 | S3×C24 | C22≀C2 | C22×S3 | C22⋊C4 | C2×D4 | C24 | C22 |
# reps | 1 | 3 | 3 | 3 | 1 | 1 | 3 | 1 | 1 | 12 | 3 | 3 | 1 | 6 |
Matrix representation of S3×C22≀C2 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 3 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,5,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,3,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
S3×C22≀C2 in GAP, Magma, Sage, TeX
S_3\times C_2^2\wr C_2
% in TeX
G:=Group("S3xC2^2wrC2");
// GroupNames label
G:=SmallGroup(192,1147);
// by ID
G=gap.SmallGroup(192,1147);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,570,185,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^2=g^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations